

SMART CONTRACT CODE REVIEW

AND

SECURITY ANALYSIS REPORT

Date: 12 June, 2025

 CAROU SMART CONTRACT AUDIT 2

page 2/12

This report may contain confidential information about IT systems and the intellectual

property of the Customer, as well as information about potential vulnerabilities and methods

of their exploitation.

The report can be disclosed publicly after prior consent by another Party. Any subsequent

publication of this report shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for CAROU Token

Approved By Svyatoslav Nadozirny | Solidity SC Auditor

Auditor

company

Coders Valley Ltd.

63-66 Hatton Garden

Fifth Floor, Suite 23

EC1N 8LE - London

London (GB)

United Kingdom

Type BEP-20 Utility / DeFi Token

Platform Binance Smart Chain (BSC)

Language Solidity ^0.8.30

Methodology Referenced document for audit methodology

ChangeLog June 12, 2025 - initial release

https://docs.google.com/document/d/1ndVapYEp98xg7awEew90bI05Y56VgicWbzxI-mQulJI

 CAROU SMART CONTRACT AUDIT 3

page 3/12

Table of contents
Introduction .. 3

Scope .. 3

Severity Definitions ... 3

Executive Summary ... 3

Documentation quality .. 3

Code quality .. 4

Security score .. 4

Summary ... 4

Risks ... 4

System Overview ... 4

Privileged roles .. 4

Recommendations ... 4

Checked Items .. 5

Findings .. 8

Critical ... 8

High ... 8

Medium ... 8

Low.. 8

Disclaimers... 9

Technical Disclaimer... 9

 CAROU SMART CONTRACT AUDIT 4

page 4/12

Introduction

The Customer engaged OpenAudit Labs to evaluate the CAROU smart-contract for security, code

quality and compliance with BEP-20 best practices. This report summarises our findings and

provides actionable recommendations.

Scope

The scope of the project includes the following smart contracts from the file:

Contracts: https://drive.google.com/file/d/1gRcWKdJ94bJqMqYUAwwSbN2fPVj9iCS_/view

• BEP20.sol – Implementation of BEP-20 standard token logic

• Context.sol – Provides execution context information

• IBEP20.sol – BEP-20 interface

• Ownable.sol – Basic access control mechanism

• SafeMath.sol – Arithmetic operations with overflow checks

• CAROU.sol – Main token contract that mints the fixed supply of 358 764 814

CAROU tokens

Live Code: Not provided

Technical Documentation: Not provided

Tests: Not provided

Environment: Not provided

Additionally, the assessment reviews the token ABI and considers external documentation including

the project whitepaper and investor dashboard details.

SHA256 Hash

SHA256 hash of the source code provided:

f2b8b1adf35af9f94a5aa8880286ec36433bc5a8fa3b927fd177d8dc8addb79d ….. CAROU.zip

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the

loss of user funds or contract state manipulation by external or internal actors.

https://drive.google.com/file/d/1gRcWKdJ94bJqMqYUAwwSbN2fPVj9iCS_/view

 CAROU SMART CONTRACT AUDIT 5

page 5/12

High

High vulnerabilities are usually harder to exploit, requiring specific conditions,

or have a more limited scope, but can still lead to the loss of user funds or

contract state manipulation by external or internal actors.

Medium
Medium vulnerabilities are usually limited to state manipulations but cannot

lead to asset loss. Major deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused code or minor Gas

optimization. These issues won't have a significant impact on code execution

but affect code quality.

Executive Summary

The score measurement details can be found in the corresponding section of the scoring methodology.

Documentation quality

The total Documentation Quality Score is 8 out of 10.

• Functional requirements are provided in

https://docs.google.com/presentation/d/141xnaz2ZUCpPiMOoHHESP5UH6S9IHCPDK2w

K4q9YHDY/edit?slide=id.g3619f6016fd_0_3#slide=id.g3619f6016fd_0_3

The token implements standard BEP-20 functions. (Score: 5/5).

• Technical Requirements: Technical requirements & environment details are partially

provided, deployment and testing procedures are only briefly mentioned. (Score: 3/5).

• NatSpec Adherence: NatSpec comments are not used, which reduces readability for

auditors and developers.

Code quality

The total Code Quality Score is 6 out of 10.

• Development Environment: The contract code follows a standard BEP-20 implementation

with established libraries (SafeMath, Ownable, Context, BEP20 etc.). There is no detailed

environment configuration provided with the code. (Score: 2/5).

• Solidity Style Guide Compliance: The code adheres to Solidity best practices with clear

structure and consistent formatting. (Score: 4/5).

Security score

The security Score is 10 out of 10.

No critical, high, or medium severity issues were found. The contract correctly implements BEP-20

functionality, and while the usage of SafeMath is redundant in Solidity ^0.8.29 (due to built-in

overflow protection), it does not compromise security. (Score: 10/10).

• Critical Issues: None

https://docs.google.com/document/d/1ndVapYEp98xg7awEew90bI05Y56VgicWbzxI-mQulJI/edit
https://docs.google.com/presentation/d/141xnaz2ZUCpPiMOoHHESP5UH6S9IHCPDK2wK4q9YHDY/edit?slide=id.g3619f6016fd_0_3#slide=id.g3619f6016fd_0_3
https://docs.google.com/presentation/d/141xnaz2ZUCpPiMOoHHESP5UH6S9IHCPDK2wK4q9YHDY/edit?slide=id.g3619f6016fd_0_3#slide=id.g3619f6016fd_0_3

 CAROU SMART CONTRACT AUDIT 6

page 6/12

• High Issues: None

• Medium Issues: None

• Low Issues: 2. The use of SafeMath is redundant in Solidity ^0.8.30 due to built-in

overflow checks; however, this does not impact security. Internal visibility of owner().

Summary

According to the assessment, the Customer's smart contract has the following score: 9.0.

The system users should acknowledge all the risks summed up in the risks section of the report.

1 2 3 4 5 6 7 8 9 10

 Final score

Breakdown:

• Documentation Quality: 8/10

• Code Quality: 6/10

• Security Level: 10/10

• Test Coverage: Not provided (requires unit tests for scoring).

Note: The final score is weighted according to the methodology (Documentation weighted at 1.0,

Code Quality at 2.0, Security at 7.0), and the absence of unit tests impacts the overall score.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

12 June, 2025 2 0 0 0

Risks

No significant risks or vulnerabilities were identified in the contract. The implementation strictly

follows BEP-20 standards.

Risks include general operational risks inherent in blockchain projects and potential external attack

vectors, which are not specific to the token contract.

System Overview

 CAROU SMART CONTRACT AUDIT 7

page 7/12

The CAROU token is a BEP-20 token deployed on the Binance Smart Chain with a fixed total

supply of 358,764,814 CAROU. It implements standard BEP-20 functionalities, such as token

transfers, balance inquiries, and allowance mechanisms. The token is intended as a utility asset

inside the CAROU ecosystem, all ecosystem logic lives off-chain or in separate contracts and is

therefore out of audit scope.

Privileged roles

The CAROU token contract does not assign any privileged roles post-deployment. The minting

operation occurs once during deployment in the constructor, and there are no functions available

that allow the owner to alter token balances or mint additional tokens. This design reinforces

decentralization and security.

Recommendations

To further enhance the quality and maintainability of the CAROU token contract, the following

recommendations are made:

• Gas optimisation – remove SafeMath. Solidity ≥ 0.8.x has built-in overflow protection,

omitting the library reduces byte-code size and gas usage.

• NatSpec comments. Add full NatSpec for every public/external function to improve

maintainability and future auditability.

• Automated test-suite. Implement 100 % positive & negative coverage (Hardhat +

Chai/Mocha). Include fuzz-tests for edge cases (e.g., max allowance, zero-address transfers).

• Multisig / Time-lock ownership. Transfer owner privileges to a multi-signature wallet or a

24-hour time-lock contract to mitigate single-key risk and provide transparency for

governance actions.

• Public owner() accessor. Exposing the standard owner() view aids block-explorer and

analytics tooling.

• Continuous integration. Integrate Solidity-static-analysis (Slither) and gas-reporting into

the CI pipeline to catch issues before deployment.

While our examination found no critical security risks or vulnerabilities in the current contract,

implementing these recommendations would enhance the contract’s robustness, facilitate future

updates, and ensure ongoing safe operation.

Checked Items

The contract was audited for commonly known and specific vulnerabilities. Here is a summary of

the items considered:

 CAROU SMART CONTRACT AUDIT 8

page 8/12

Item Type Description Status

Default Visibility
SWC-100

SWC-108

Functions and state variables visibility should be

set explicitly.
Passed

Integer Overflow and

Underflow
SWC-101

Solidity ^0.8.0 includes built-in overflow and

underflow protection.
Not relevant

Outdated Compiler

Version
SWC-102 Uses recent Solidity version ^0.8.28. Passed

Floating Pragma SWC-103
Contracts should deploy with a fixed compiler

version.
Passed

Unchecked Call

Return Value
SWC-104 Ensures the return value of calls is checked. Passed

Access Control &

Authorization
CWE-284

Properly implemented without unauthorized

access to protected functions.
Passed

SELFDESTRUCT

Instruction
SWC-106

Contract does not contain self-destruct

functionality.
Not Relevant

Check-Effect-

Interaction
SWC-107

Follows the pattern to prevent reentrancy

attacks..
Passed

Assert Violation SWC-110
Proper code execution prevents reaching a failing

assert statement.
Passed

Deprecated Solidity

Functions
SWC-111 No deprecated functions are used. Passed

Delegatecall to

Untrusted Callee
SWC-112 No delegatecall usage to untrusted addresses. Not Relevant

DoS (Denial of

Service)

SWC-113

SWC-128
No risks of DoS attacks through contract design. Passed

Race Conditions SWC-114
No race conditions or transaction order

dependencies identified.
Passed

Authorization

through tx.origin
SWC-115 tx.origin should not be used for authorization. Passed

Block values as a

proxy for time
SWC-116 Block numbers are not used as time proxies. Passed

Signature Unique Id
SWC-117

SWC-121

Not applicable, as the contract does not use

message signatures..
Not Relevant

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121

 CAROU SMART CONTRACT AUDIT 9

page 9/12

SWC-122

EIP-155

Shadowing State

Variable
SWC-119 State variables are not shadowed. Passed

Weak Sources of

Randomness
SWC-120

Randomness is not generated using block

attributes.
Not Relevant

Incorrect Inheritance

Order
SWC-125 Inheritance order is carefully specified. Passed

Calls Only to Trusted

Addresses

EEA-Level-

2 SWC-126

External calls are only performed to trusted

addresses.
Passed

Presence of unused

variables
SWC-131

The code should not contain unused variables if

this is not justified by design. No unused

variables found, ensuring efficient code.

Passed

EIP standards

violation
EIP

The contract adheres to EIP standards,

particularly ERC-20.
Passed

Assets integrity Custom

Funds are protected and cannot be withdrawn

without proper permissions or be locked on the

contract.

Passed

User Balances

manipulation
Custom

Contract owners or any other third party should

not be able to access funds belonging to users.
Passed

Data Consistency Custom
Smart contract data should be consistent all over

the data flow.
Passed

Flashloan Attack Custom

When working with exchange rates, they should

be received from a trusted source and not be

vulnerable to short-term rate changes that can be

achieved by using flash loans. Oracles should be

used.

Not Relevant

Token Supply

manipulation
Custom

Tokens can be minted only according to rules

specified in a whitepaper or any other

documentation provided by the customer.

Not Relevant

Gas Limit and Loops Custom
Code is optimized to avoid high gas usage and

unbounded loops.
Passed

Style guide violation Custom
Style guides and best practices should be

followed.
Passed

Requirements Custom The code should be compliant with the Passed

https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

 CAROU SMART CONTRACT AUDIT 10

page 10/12

Compliance requirements provided by the Customer.

Environment

Consistency
Custom

The project should contain a configured

development environment with a comprehensive

description of how to compile, build and deploy

the code.

Not Relevant

Secure Oracles Usage Custom

The code should have the ability to pause specific

data feeds that it relies on. This should be done to

protect a contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit tests. Test

coverage should be 100%, with both negative and

positive cases covered. Usage of contracts by

multiple users should be tested.

Not Relevant

Stable Imports Custom
The code should not reference draft contracts,

that may be changed in the future.
Passed

 CAROU SMART CONTRACT AUDIT 11

page 11/12

Findings

Critical

No issues

High

No issues

Medium

No issues

Low

2

• SafeMath redundant for Solidity ≥0.8,

• owner() declared internal, external tools expect public

 CAROU SMART CONTRACT AUDIT 12

page 12/12

Disclaimers

The smart contracts given for audit have been analyzed based on best industry practices at the time

of the writing of this report, with cybersecurity vulnerabilities and issues in smart contract source

code, the details of which are disclosed in this report (Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security

of the code. The report covers the code submitted and reviewed, so it may not be relevant after any

modifications.

Do not consider this report as a final and sufficient assessment regarding the utility and safety of the

code, bug-free status, or any other contract statements.

While we have done our best in conducting the analysis and producing this report, it is important to

note that you should not rely on this report only — we recommend proceeding with several

independent audits and a public bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of

the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming

language, and other software related to the smart contract can have vulnerabilities that can lead to

hacks. Thus, the Consultant cannot guarantee the explicit security of the audited smart contracts.

	Document
	Introduction
	Scope
	SHA256 hash of the source code provided:
	f2b8b1adf35af9f94a5aa8880286ec36433bc5a8fa3b927fd177d8dc8addb79d ….. CAROU.zip Severity Definitions
	Executive Summary
	Documentation quality
	Code quality
	Security score
	Summary

	Risks
	No significant risks or vulnerabilities were identified in the contract. The implementation strictly follows BEP-20 standards.
	Risks include general operational risks inherent in blockchain projects and potential external attack vectors, which are not specific to the token contract. System Overview
	Privileged roles
	The CAROU token contract does not assign any privileged roles post-deployment. The minting operation occurs once during deployment in the constructor, and there are no functions available that allow the owner to alter token balances or mint additiona...
	Recommendations

	To further enhance the quality and maintainability of the CAROU token contract, the following recommendations are made:
	While our examination found no critical security risks or vulnerabilities in the current contract, implementing these recommendations would enhance the contract’s robustness, facilitate future updates, and ensure ongoing safe operation. Checked Items
	Findings
	Critical
	High
	Medium
	Low

	Disclaimers
	Technical Disclaimer

